System.Net.WebException: Сбой запроса с состоянием HTTP 404: Not Found. в System.Web.Services.Protocols.SoapHttpClientProtocol.ReadResponse(SoapClientMessage message, WebResponse response, Stream responseStream, Boolean asyncCall) в System.Web.Services.Protocols.SoapHttpClientProtocol.Invoke(String methodName, Object[] parameters) в EduServ.DataProcess.AddViewing(Int32 OrgId, Int32 Type, String ID, Int32 PageNum, String IP, String URL, String Refer) в c:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\root\e04f9611\e2b8c6e0\App_WebReferences.e2kibjas.0.cs:строка 76 в MyUserControl.SaveView(PageType Type, String ID, Int32 PageNum) в e:\WWW\edu.cap.ru\App_Code\MyUserControl.cs:строка 126 Выступления: Методы и приемы формирования элементарных математических представлений / МБДОУ «Детский сад №3 «Ромашка» Вурнарского района / Портал образования ЧР
Версия для слабовидящих
Обычная версия сайта
  Размер шрифта:   Цветовая схема:   Изображения:

 

заведующий
Антонова Ирина Андреевна
Сведения об образовательной организации
Подраздел "Основные сведения"
Подраздел "Структура и органы управления образовательной организацией"
Подраздел "Документы"
Подраздел "Образование"
Подраздел "Образовательные стандарты"
Подраздел "Руководство. Педагогический (научно-педагогический) состав"
Подраздел "Материально-техническое обеспечение и оснащенность образовательного процесса"
Подраздел "Стипендии и иные виды материальной поддержки"
Подраздел "Платные образовательные услуги"
Подраздел "Финансово-хозяйственная деятельность"
Подраздел "Вакантные места для приема (перевода) обучающихся"
Подраздел "Доступная среда"
Подраздел "Международное сотрудничество"
Страницы педагогов
Фотоотчеты
Get Adobe Flash player
Методы и приемы формирования элементарных математических представлений
Дата: 18.10.2018
Автор выступления: Антонова С.Г.

Методы и приемы формирования элементарных математических представлений

В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения: практические, наглядные, словесные, игровые. При выборе метода учитывается ряд факторов: программные задачи, решаемые на данном этапе, возрастные и индивидуальные особенности детей, наличие необходимых дидактических средств и т. д.

Постоянное внимание педагога к обоснованному выбору методов и приемов, рациональному использованию их в каждом конкретном случае обеспечивает:

· успешное формирование элементарных математических представлений и отражение их в речи;

· умение воспринимать и выделять отношения равенства и неравенства (по числу, размеру, форме), последовательную зависимость (уменьшение или увеличение по размер), числу), выделять количество, форму, величину как общий признак анализируемых объектов, определять связи и зависимости:

· ориентировку детей на применение освоенных способов практических действий (например, сравнения путем сопоставления, счета, измерения) в новых условиях и самостоятельный поиск практических способов выявления, обнаружения значимых в данной ситуации признаков, свойств, связей. К примеру, в условиях игры выявить порядок следования, закономерность чередования признаков, общность свойств

В формировании элементарных математических представлений ведущим является практический метод. Суть его заключается в организации практической деятельности детей, направленной на усвоение строго определенных способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т. д.).

Характерные особенности практического метода при формировании элементарных математических представлений:

· выполнение разнообразных практических действий, служащих основой для умственной деятельности;

· широкое использование дидактического материала;

· возникновение представлений как результата практических действий с дидактическим материалом:

· выработка навыков счета, измерение и вычисления в самой элементарной форме;

· широкое использование сформированных представлений и освоенных действий в быту, игре, труде, т. е. в разнообразных видах деятельности.

Данный метод предполагает организацию специальных упражнений, которые могут предлагаться в форме задания, организовываться как действия с демонстрационным материалом или протекать в виде самостоятельной работы с раздаточным материалом.

Упражнения бывают коллективными — выполняются всеми детьми одновременно и индивидуальными — осуществляются отдельным ребенком у доски или стола воспитателя. Коллективные упражнения, помимо усвоения и закрепления знаний, могут использоваться для контроля. Индивидуальные, выполняя те же функции, служат еще и образцом, на который дети ориентируются в коллективной деятельности. Взаимосвязь между ними определяется не только общностью функций, но и постоянным чередованием, закономерной сменой друг друга.

Игровые элементы включаются в упражнения во всех возрастных группах: и младших — в виде сюрпризного момента, имитационных движений, сказочного персонажа и т. д.; в старших они приобретают характер поиска, соревнования.

С возрастом детей упражнения усложняются: они состоят из большего числа звеньев, учебно-познавательное содержание в них не маскируется практической или игровой задачей, во многих случаях для их выполнения требуются действия по представлению, проявление смекалки, сообразительности. Так, в младшей группе воспитатель предлагает детям взять морковки и угостить каждого зайца; в старшей — определить количество кругов на карточке, вывешенной на доске, найти в групповой комнате такое же количество предметов, доказать равенство кругов на карточке и группы предметов. Если в первом случае упражнение состоит из условно выделенного одного звена, то во втором — из трех.

Наиболее эффективны комплексные упражнения, дающие возможность одновременно решать программные задачи из разных разделов, органически сочетая их друг с другом, например: «Количество и счет» и «Величина», «Количество и счет» и «Геометрические фигуры», «Геометрические фигуры», «Величина» и «Количество и счет» и т. д. Такие упражнения повышают коэффициент полезного действия занятии, увеличивают его плотность.

В детском саду широко используются однотипные (т. е. преследующие одну и ту же цель и осуществляемые па одном содержании) упражнения, благодаря которым вырабатываются необходимые способы действий; осуществляется овладение счетом, измерением, простейшими вычислениями; формируется круг элементарных математических представлений.

При подборе упражнений учитывается не только их сочетаемость в одном занятии, но и дальнейшая перспектива. Система упражнений па одном занятии должна органично вписываться в общую систему разнообразных упражнении, проводимых в течение года.

Существующая в настоящее время система упражнений во всех возрастных группах строится по следующему принципу; каждое предыдущее и последующее упражнение имеет общие элементы — материал, способы действии, результаты и т. д. Сближаются во времени или даются одновременно упражнения на усвоение взаимосвязанных и взаимообратных способов действия (например, наложение — приложение), отношений (например, больше — меньше, выше — ниже, шире — уже), арифметических действии (например, сложение — вычитание).

В упражнениях следует предусмотреть все возможные варианты зависимостей, например, организовать измерение одинаковыми мерками разных объектов, одинаковых объектов разными мерками, разных объектов разными мерками и т. д. Сталкиваясь при выполнении упражнений с разными проявлениями одних и тех же математических связей, зависимостей и отношений, ребенок легче и быстрее осознает их и придет к обобщению.

С точки зрения проявления детьми активности, самостоятельности, творчества в процессе выполнения можно выделить репродуктивные (подражательные) и продуктивные упражнения.

Репродуктивные основаны на простом воспроизведении способа действия. При этом действия детей полностью регламентируются взрослым в виде образца, пояснения, требования, правила, определяющих, что и как надо делать Строгое следование им дает положительный результат, обеспечивает правильное выполнение задания, предупреждает возможные ошибки. Ход и результат упражнений находятся под непосредственным наблюдением и контролем воспитателя, который указаниями, пояснениями корректирует действия детей

Продуктивные упражнения характеризуется тем, что способ действий дети должны полностью или частично открыть сами. Это развивает самостоятельность мышления, требует творческого подхода, вырабатывает целенаправленность и целеустремленность. Воспитатель обычно говорит, что надо делать, но не сообщает и не демонстрирует способа действия. При выполнении упражнений ребенок прибегает к мыслительным и практическим пробам, выдвигает предложения и проверяет их, мобилизует имеющиеся знания, учится использовать их в любой ситуации, проявляет сообразительность, смекалку и т. д. При выполнении таких упражнений педагог оказывает помощь не прямо, а в косвенной форме, предлагает детям подумать и еще раз попробовать, одобряет правильные действия, напоминает об аналогичных упражнениях, которые ребенок уже выполнял, и т. д.

Соотношение продуктивных и репродуктивных упражнений определяется возрастом детей, имеющимся у них опытом решения практических и познавательных задач, характером самих математических представлений и уровнем развития их у детей. С возрастом увеличивается слепень самостоятельности детей при выполнении упражнений. Возрастает роль словесных указаний, пояснений, разъяснений, организующих и направляющих самостоятельную деятельность дошкольников. Дети учатся, выполнив задание, упражнение, оценивать правильность своих действий и действий товарищей, осуществлять самоконтроль.

При формировании элементарных математических представлений игра выступает как самостоятельный метод обучения. Но ее можно отнести и к группе практических методов, имея в виду особую значимость разного вида игр в овладении разными практическими действиями, такими, как составление целого из частей, рядов фигур, счет, наложение и приложение, группировка, обобщение, сравнение и др.

Наиболее широко используются дидактические игры. Благодаря обучающей задаче, облеченной в игровую форму (игровой замысел), игровым действиям и правилам ребенок непреднамеренно усваивает определенное познавательное содержание. Все виды дидактических игр (предметные, настольно-печатные, словесные) являются эффективным средством и методом формирования элементарных математических представлений. Предметные и словесные игры проводятся на занятиях по математике и вне их. Настольно-печатные, как правило, — в свободное от занятий время.

Знания в виде способов действий и соответствующих им представлений ребенок получает вначале вне игры, а в ней лишь создаются благоприятные условия для их уточнения, закрепления, систематизации (в сюжетно дидактических, дидактических и других видах игр).

Игра как метод обучения и формирования элементарных математических представлений предполагает использование на занятиях отдельных элементов разных видов игр (сюжетной, подвижной и т. д.), игровых приемов (сюрпризный момент, соревнование, поиск и т. д.), органичное сочетание игрового и дидактического начала в виде руководящей и обучающей роли взрослого и высокой познавательной активности детей.

Наглядные и словесные методы при формировании «элементарных» математических представлений не являются самостоятельными, они сопутствуют практическим и игровым методам. Это отнюдь не умаляет их значения. В детском саду широко используются приемы, относящиеся к наглядным, словесным и практическим методам и применяемые в тесном единстве друг с другом:

1. Показ (демонстрация) способа действия в сочетании с объяснением или образец воспитателя. Это основной прием обучения, он носит наглядно-практически-действенный характер, выполняется с привлечением разнообразных дидактических средств, дает возможность формировать навыки и умения у детей. К нему предъявляются следующие требования:

· четкость, расчлененность показа способов действия;

· согласованность действий со словесными пояснениями;

· точность, краткость и выразительность речи, сопровождающей показ:

· активизация восприятия, мышления и речи детей.

2. Инструкция для выполнения самостоятельных упражнений. Этот прием связан с показом воспитателем способов действия и вытекает из него. В инструкции отражается, что и как надо делать, чтобы получить необходимый результат. В старших группах инструкция дается полностью до начала выполнения задания, в младших — предваряет каждое новое действие.

3. Пояснения, разъяснения, указания. Эти словесные приемы используются воспитателем при демонстрации способа действия или в холе выполнения детьми задания с целью предупреждения ошибок, преодоления затруднений и т. д. Они должны быть конкретными, короткими и образными.

Показ уместен во всех возрастных группах при ознакомлении с новыми действиями (приложение, измерение), но при этом необходима активизация умственной деятельности, исключающая прямое подражание. В ходе освоения нового действия, формирования умения считать, измерять желательно избегать повторного показа Освоение действия и совершенствование его осуществляется под влиянием словесных приемов: пояснения, указания, вопросов. Одновременно идет освоение речевого выражения способа действия.

4. Один из основных приемов формирования элементарных математических представлений во всех возрастных группах — вопросы к детям. В педагогике принята следующая классификация вопросов:

· репродуктивномнемонические (Сколько? Что это такое? Как называется эта фигура? Чем отличается квадрат от треугольника?);

· репродуктивно познавательные (Сколько будет на полке кубиков, если я поставлю еще один? Какое число больше (меньше): девять или семь?);

· продуктивно познавательные (Что надо сделать, чтобы кружков стало по 9? Как разделить полоску на равные части? Как можно определить, который флажок в ряду красный?).

Вопросы активизируют восприятие, память, мышление, речь детей, обеспечивают осмысление и усвоение материала. При формировании элементарных математических представлений наиболее значима серия вопросов: от более простых, направленных на описание конкретных признаков, свойств предмета, результатов практических действий, т. е констатирующих, к более сложным, требующим установления связей, отношений, зависимостей, их обоснования и объяснения, использования простейших доказательств. Чаше всего такие вопросы задаются после демонстрации воспитателем образца или выполнения упражнений детьми. Например, после того как дети разделили бумажный прямоугольник на две равные части, педагог спрашивает: «Что ты сделал? Как называются эти части? Почему каждую из этих двух частей можно назвать половиной? Какой формы получились части? Как доказать, что получились квадраты? Что надо сделать, чтобы разделить прямоугольник на четыре равные части?».

Разные по характеру вопросы вызывают различный тип познавательной деятельности: от репродуктивной, воспроизводящей изученный материал, до продуктивной, направленной на решение проблемных задач.

Основные требования к вопросам как методическому приему:

· точность, конкретность, лаконизм:

· логическая последовательность;

· разнообразие формулировок, т. е. об одном и том же следует спрашивать по-разному.

· оптимальное соотношение репродуктивных и продуктивных вопросов в зависимости от возраста детей и изучаемого материала;

· вопросы должны будить мысль ребенка, развивать его мышление, заставлять задуматься, выделить требуемое, провести анализ, сравнение, сопоставление, обобщение;

· количество вопросов должно быть небольшим, но достаточным, чтобы достичь поставленную дидактическую цель;

· следует избегать подсказывающих и альтернативных вопросов.

Воспитатель обычно задает вопрос всей группе, а отвечает на него вызванный ребенок. В отдельные случаях возможны хоровые ответы, особенно в младших группах. Детям необходимо дать возможность обдумать ответ.

Старших дошкольников следует учить формулировать вопросы самостоятельно. В конкретной ситуации, используя дидактический материал, воспитатель предлагает детям спросить о количестве предметов, их порядковом месте, о размере, форме, способе измерения и т. д. Педагог учит задавать вопросы по результатам непосредственного сравнения («Коля сравнил квадрат и прямоугольник. О чем можно спросить его?»), вслед за выполненным у доски практическим действием («Спросите Галю, что она узнала, разложив предметы на два ряда? Посмотрите, что я сделала. О чем спросите меня?»), на основе действия, выполненного рядом сидящим ребенком («О чем можно спросить Аню?»). Дети успешно овладевают умением задавать вопросы о том случае, если они адресуются конкретному лицу — воспитателю, товарищу.

Ответы детей должны быть:

· краткими или полными, в зависимости от характера вопроса;

· самостоятельным, осознанными;

· точными, ясными, достаточно громкими;

· грамматически правильными (соблюдение порядка слов, правил их согласования, использование специальной терминологии).

В pa6oтe с дошкольниками взрослому приходится часто прибегать к приему переформулировки ответа, давая его правильный образец и предлагая повторить. Например: «На полке грибов четыре», — говорит малыш. «На полке четыре гриба», уточняет воспитатель.

5. Контроль и оценка. Эти приемы взаимосвязаны. Контроль осуществляется через наблюдение за процессом выполнения детьми заданий, результатами их действий, ответами. Данные приемы сочетаются с указаниями, пояснениями, разъяснениями, демонстрацией способов действий взрослым в качестве образца, непосредственной помощью, включают исправление ошибок.

Педагог осуществляет исправление ошибок в ходе индивидуальной и коллективной работы с детьми. Исправлению подлежат практически действенные и речевые ошибки Взрослый разъясняет их причины, дает образец или в качестве примера использует действия, ответы других ребят. Постепенно воспитатель начинает сочетать контроль с самои взаимоконтролем. Зная типичные ошибки, которые допускают дети при счете, измерении, простейших вычислениях и т. д., педагог осуществляет профилактическую работу.

Оценке подлежат способы и результаты действий, поведение ребят Оценка взрослого, приучающего ориентироваться на образец, начинает сочетаться с оценкой товарищей и самооценкой. Этот прием используется по ходу и в конце упражнения, игры, занятия.

Применение контроля и оценки имеет свою специфику в зависимости от возраста детей и степени овладения ими знаниями и способами действий. Контроль постепенно переносится на результат, опенка становится более дифференцированной и содержательной. Эти приемы, кроме обучающей, выполняют и воспитательную функцию: помогают воспитать доброжелательное отношение к товарищам, желание и умение помочь им и т. д.

6. В ходе формирования элементарных математических представлений у дошкольников сравнение, анализ, синтез, обобщение выступают не только как познавательные процессы (операции), но и как методические приемы, определяющие тот путь, но которому движется мысль ребенка в процессе учения.

В основе сравнения лежит установление сходства и различия между объектами. Дети сравнивают предметы по количеству, форме, величине, пространственному расположению, интервалы времени — по длительности и т. д. Вначале их учат сравнивать минимальное количество предметов. Затем количество предметов постепенно увеличивают, а степень контрастности сопоставляемых признаков соответственно уменьшают.

Анализ и синтез как методические приемы выступают в единстве. Примером их использования может служить формирование у детей представлений о «много» и «один», которые возникают под влиянием наблюдения и практических действий с предметами.

Воспитатель вносит в группу сразу большое количество одинаковых игрушек — столько, сколько детей. Раздает по одной игрушке каждому малышу, а затем собирает их вместе. На глазах у ребят группа предметов дробится на отдельности, а из них вновь воссоздается целое.

На основе анализа и синтеза детей подводят к обобщению, в котором обычно суммируются результаты всех наблюдений и действий. Эти приемы направлены на осознание количественных, пространственных и временных отношений, на выделение главного, существенного. Обобщение делается в конце каждой части и всего занятия. В начале обобщает воспитатель, а затем — дети.

Сравнение, анализ, синтез, обобщение осуществляются на наглядной основе с привлечением разнообразных дидактических средств. Наблюдения, практические действия с предметами, отражение их результатов в речи, вопросы к детям являются внешним выражением этих методических приемов, которые тесно между собой связаны и используются чаше всего в комплексе.

7. В методике формирования элементарных математических представлений некоторые специальные способы действий, ведущие к формированию представлений и освоению математических отношении, выступают в роли методических приемов. Это приемы наложения и приложения, обследования формы предмета, «взвешивания» предмета «на руке», введение фишек — эквивалентов, присчитывания и отсчитывания по единице и т. д.

Этими приемами дети овладевают в процессе показа, объяснения, выполнения упражнений и в дальнейшем прибегают к ним с целью проверки, доказательства, в объяснениях и ответах, в играх и других видах деятельности.

8. Моделирование — наглядно-практический прием, включающий в себя создание моделей и их использование с целью формирования элементарных математических представлений у детей. В настоящее время положено лишь начало теоретической и конкретно-методической разработке этого приема, являющегося чрезвычайно перспективным в силу следующих факторов:

· Использование моделей и моделирования ставит ребенка в активную позицию, стимулирует его познавательную деятельность.

· Дошкольник располагает некоторыми психологическими предпосылками для введения отдельных моделей и элементов моделирования: развитие наглядно-действенного и наглядно-образного мышления.

· Все без исключения математические понятия рассматриваются как своеобразные модели реальной действительности.

Модели следует рассматривать и как дидактическое средство, причем достаточно эффективное. «При овладении способами использования моделей перед детьми раскрывается область особых отношений — отношений моделей и оригинала и соответственно формируются два тесно связанных между собой плана отражения — план реальных объектов и план моделей, воспроизводящих эти объекты». Эти планы отражения имеют огромное значение для развития наглядно-образного и понятийного мышления. Модели могут выполнять разную роль: одни воспроизводят внешние связи, помогают ребенку увидеть те из них, которые он самостоятельно не замечает, другие воспроизводят искомые, но скрытые связи, непосредственно не воспринимаемые свойства вещей. Широко используются модели при формировании временных представлений (модель частей суток, недели, года, календарь), количественных (числовая лесенка, числовая фигура и т. д.), пространственных (модели геометрических фигур) и т. д. При формировании элементарных математических представлений применяются предметные, предметно-схематические, графические модели.

Послание Президента России Федеральному Собранию
Послание Президента России Федеральному Собранию
Послание Главы Чувашской Республики Государственному Совету Чувашии
Послание Главы Чувашской Республики Государственному Совету Чувашии
Воспитание
Электронная очередь в детские сады
Защита персональных данных
НОКО
НОКО
Школа безопасности
ДЛЯ ВАС, РОДИТЕЛИ
ДЛЯ ВАС, РОДИТЕЛИ!
СОЦИАЛЬНАЯ ПОДДЕРЖКА ДЕТЕЙ И РОДИТЕЛЕЙ
СОЦИАЛЬНАЯ ПОДДЕРЖКА ДЕТЕЙ И РОДИТЕЛЕЙ
Противодействие коррупции
Противодействие коррупции
ПРОФСОЮЗ
ПРОФСОЮЗ
организация питания в ДОУ
Организация питания в ДОУ
Меры социальной поддержки
Меры социальной поддержки
ФГОС
ЧУВАШСКИЙ РЕСПУБЛИКАНСКИЙ ИНСТИТУТ ОБРАЗОВАНИЯ
2021 год науки и технологий
2021 ГОД НАУКИ И ТЕХНОЛОГИЙ
Растим детей. РФ
Система методической работы
Система методической работы
Реквизиты
<Ноябрь 2021>
ПнВтСрЧтПтСбВс
25262728293031
1234567
891011121314
15161718192021
22232425262728
293012345
Rambler's Top100 TopList